Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Int J Mol Sci ; 25(4)2024 Feb 19.
Article En | MEDLINE | ID: mdl-38397093

The lung can experience different oxygen concentrations, low as in hypoxia, high as under supplemental oxygen therapy, or oscillating during intermittent hypoxia as in obstructive sleep apnea or intermittent hypoxia/hyperoxia due to cyclic atelectasis in the ventilated patient. This study aimed to characterize the oxygen-condition-specific protein composition of extracellular vesicles (EVs) released from human pulmonary microvascular endothelial cells in vitro to decipher their potential role in biotrauma using quantitative proteomics with bioinformatic evaluation, transmission electron microscopy, flow cytometry, and non-activated thromboelastometry (NATEM). The release of vesicles enriched in markers CD9/CD63/CD81 was enhanced under intermittent hypoxia, strong hyperoxia and intermittent hypoxia/hyperoxia. Particles with exposed phosphatidylserine were increased under intermittent hypoxia. A small portion of vesicles were tissue factor-positive, which was enhanced under intermittent hypoxia and intermittent hypoxia/hyperoxia. EVs from treatment with intermittent hypoxia induced a significant reduction of Clotting Time in NATEM analysis compared to EVs isolated after normoxic exposure, while after intermittent hypoxia/hyperoxia, tissue factor in EVs seems to be inactive. Gene set enrichment analysis of differentially expressed genes revealed that EVs from individual oxygen conditions potentially induce different biological processes such as an inflammatory response under strong hyperoxia and intermittent hypoxia/hyperoxia and enhancement of tumor invasiveness under intermittent hypoxia.


Extracellular Vesicles , Hyperoxia , Humans , Oxygen/pharmacology , Oxygen/metabolism , Hyperoxia/metabolism , Proteome/metabolism , Endothelial Cells/pathology , Thromboplastin/metabolism , Lung/pathology , Hypoxia/metabolism , Extracellular Vesicles/metabolism , Endothelium/pathology
2.
Front Physiol ; 14: 1109452, 2023.
Article En | MEDLINE | ID: mdl-37064885

Introduction: Ventilator-induced lung injury (VILI) may aggravate critical illness. Although angiotensin-converting enzyme (ACE) inhibition has beneficial effects in ventilator-induced lung injury, its clinical application is impeded by concomitant hypotension. We hypothesized that the aminopeptidase inhibitor ALT-00 may oppose the hypotension induced by an angiotensin-converting enzyme inhibitor, and that this combination would activate the alternative renin-angiotensin system (RAS) axis to counteract ventilator-induced lung injury. Methods: In separate experiments, C57BL/6 mice were mechanically ventilated with low (LVT, 6 mL/kg) and high tidal volumes (HVT, 30 mL/kg) for 4 h or remained unventilated (sham). High tidal volume-ventilated mice were treated with lisinopril (0.15 µg/kg/min) ± ALT-00 at 2.7, 10 or 100 µg/kg/min. Blood pressure was recorded at baseline and after 4 h. Lung histology was evaluated for ventilator-induced lung injury and the angiotensin (Ang) metabolite profile in plasma (equilibrium levels of Ang I, Ang II, Ang III, Ang IV, Ang 1-7, and Ang 1-5) was measured with liquid chromatography tandem mass spectrometry at the end of the experiment. Angiotensin concentration-based markers for renin, angiotensin-converting enzyme and alternative renin-angiotensin system activities were calculated. Results: High tidal volume-ventilated mice treated with lisinopril showed a significant drop in the mean arterial pressure at 4 h compared to baseline, which was prevented by adding ALT-00 at 10 and 100 µg/kg/min. Ang I, Ang II and Ang 1-7 plasma equilibrium levels were elevated in the high tidal volumes group versus the sham group. Lisinopril reduced Ang II and slightly increased Ang I and Ang 1-7 levels versus the untreated high tidal volumes group. Adding ALT-00 at 10 and 100 µg/kg/min increased Ang I and Ang 1-7 levels versus the high tidal volume group, and partly prevented the downregulation of Ang II levels caused by lisinopril. The histological lung injury score was higher in the high tidal volume group versus the sham and low tidal volume groups, and was attenuated by lisinopril ± ALT-00 at all dose levels. Conclusion: Combined angiotensin-converting enzyme plus aminopeptidase inhibition prevented systemic hypotension and maintained the protective effect of lisinopril. In this study, a combination of lisinopril and ALT-00 at 10 µg/kg/min appeared to be the optimal approach, which may represent a promising strategy to counteract ventilator-induced lung injury that merits further exploration.

3.
Antioxidants (Basel) ; 11(12)2022 Nov 28.
Article En | MEDLINE | ID: mdl-36552557

Patients presenting with insufficient tissue oxygenation and impaired lung function as in acute respiratory distress syndrome (ARDS) frequently require mechanical ventilation with supplemental oxygen. Despite the lung being used to experiencing the highest partial pressure of oxygen during healthy breathing, the organ is susceptible to oxygen-induced injury at supraphysiological concentrations. Hyperoxia-induced lung injury (HALI) has been regarded as a second hit to pre-existing lung injury and ventilator-induced lung injury (VILI) attributed to oxidative stress. The injured lung has a tendency to form atelectasis, a cyclic collapse and reopening of alveoli. The affected lung areas experience oxygen conditions that oscillate between hyperoxia and hypoxia rather than remaining in a constant hyperoxic state. Mechanisms of HALI have been investigated in many animal models previously. These studies provided insights into the effects of hyperoxia on the whole organism. However, cell type-specific responses have not been dissected in detail, but are necessary for a complete mechanistic understanding of ongoing pathological processes. In our study, we investigated the effects of constant and intermittent hyperoxia on the lung endothelium from a mouse by an in vitro proteomic approach. We demonstrate that these oxygen conditions have characteristic effects on the pulmonary endothelial proteome that underlie the physiological (patho)mechanisms.

4.
Int J Mol Sci ; 23(9)2022 Apr 19.
Article En | MEDLINE | ID: mdl-35562895

Oxidative phosphorylation is an efficient way to generate the cellular energy currency ATP in a cascade of redox reactions, which ultimately terminate in the reduction of molecular oxygen to water [...].


Oxidative Phosphorylation , Oxygen , Homeostasis , Oxidation-Reduction , Oxygen Consumption , Reactive Oxygen Species
5.
Crit Care Med ; 50(9): e696-e706, 2022 09 01.
Article En | MEDLINE | ID: mdl-35191411

OBJECTIVES: Ventilator-induced lung injury (VILI) is a major contributor to morbidity and mortality in critically ill patients. Mechanical damage to the lungs is potentially aggravated by the activation of the renin-angiotensin system (RAS). This article describes RAS activation profiles in VILI and discusses the effects of angiotensin (Ang) 1-7 supplementation or angiotensin-converting enzyme (ACE) inhibition with captopril as protective strategies. DESIGN: Animal study. SETTING: University research laboratory. SUBJECTS: C57BL/6 mice. INTERVENTIONS: Anesthetized mice ( n = 12-18 per group) were mechanically ventilated with low tidal volume (LV T , 6 mL/kg), high tidal volume (HV T , 15 mL/kg), or very high tidal volume (VHV T , 30 mL/kg) for 4 hours, or killed after 3 minutes (sham). Additional VHV T groups received infusions of 60 µg/kg/hr Ang 1-7 or a single dose of 100 mg/kg captopril. MEASUREMENTS AND MAIN RESULTS: VILI was characterized by increased bronchoalveolar lavage fluid levels of interleukin (IL)-6, keratinocyte-derived cytokine, and macrophage inflammatory protein-2 (MIP2). The Ang metabolites in plasma measured with liquid chromatography tandem mass spectrometry showed a strong activation of the classical (Ang I, Ang II) and alternative RAS (Ang 1-7, Ang 1-5), with highest concentrations found in the HV T group. Although the lung-tissue ACE messenger RNA expression was unchanged, its protein expression showed a dose-dependent increase under mechanical ventilation. The ACE2 messenger RNA expression decreased in all ventilated groups, whereas ACE2 protein levels remained unchanged. Both captopril and Ang 1-7 led to markedly increased Ang 1-7 plasma levels, decreased Ang II levels, and ACE activity (Ang II/Ang I ratio), and effectively prevented VILI. CONCLUSIONS: VILI is accompanied by a strong activation of the RAS. Based on circulating Ang metabolite levels and tissue expression of RAS enzymes, classical ACE-dependent and alternative RAS cascades were activated in the HV T group, whereas classical RAS activation prevailed with VHV T ventilation. Ang 1-7 or captopril protected from VILI primarily by modifying the systemic RAS profile.


Renin-Angiotensin System , Ventilator-Induced Lung Injury , Angiotensin II , Animals , Captopril/metabolism , Captopril/pharmacology , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolism , Renin-Angiotensin System/physiology , Tidal Volume , Ventilator-Induced Lung Injury/prevention & control
6.
Anticancer Drugs ; 33(3): 300-307, 2022 03 01.
Article En | MEDLINE | ID: mdl-34924498

Small cell lung cancer (SCLC) is frequently found disseminated at first presentation and holds a poor prognosis due to emerging resistance to first-line platinum-based and second-line topotecan chemotherapy. The present investigation tested the antitumor activity of rovalpituzumab tesirine (ROVA-T), a cytotoxic anti-DLL3 drug conjugate, against two SCLC and a corresponding SCLC CTC cell line established from a ROVA-T-resistant patient to characterize the mechanism of recurrence. Two cell lines were established from an SCLC patient progressing under ROVA-T therapy and characterized with respect to chemosensitivity against this drug as well as against currently applied chemotherapeutics and for their delta-like 3 (DLL3) expression. The chemosensitivity assays demonstrate that most SCLC lines show IC50 values exceeding the ROVA-T in-vivo concentrations and that slow-growing cells and lines showing spheroidal growth or proliferation as corresponding circulating tumor cells (CTCs) exhibit higher resistance. Chemosensitivity of the cell lines is not correlated with DLL3 protein expression possibly due to toxicity of the free payload in tissue culture. The clinical trials and experimental results demonstrate that refractoriness to ROVA-T is linked to a low initial tumor expression of DLL3, loss of DLL3 expression, higher chemoresistance to ROVA-T and the putative formation of resistant spheroids by the SCLC cells.


Antineoplastic Agents , Lung Neoplasms , Neoplastic Cells, Circulating , Small Cell Lung Carcinoma , Antibodies, Monoclonal, Humanized , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Benzodiazepinones/therapeutic use , Cell Line, Tumor , Humans , Immunoconjugates , Intracellular Signaling Peptides and Proteins/therapeutic use , Lung Neoplasms/pathology , Membrane Proteins/metabolism , Small Cell Lung Carcinoma/pathology
7.
Antioxidants (Basel) ; 10(12)2021 Dec 04.
Article En | MEDLINE | ID: mdl-34943050

Supplemental oxygen is frequently used together with mechanical ventilation to achieve sufficient blood oxygenation. Despite the undoubted benefits, it is vigorously debated whether too much oxygen can also have unpredicted side-effects. Uncertainty is also due to the fact that the molecular mechanisms are still insufficiently understood. The lung endothelium is covered with an exceptionally broad glycocalyx, carrying N- and O-glycans, proteoglycans, glycolipids and glycosaminoglycans. Glycan structures are not genetically determined but depend on the metabolic state and the expression level and activity of biosynthetic and glycan remodeling enzymes, which can be influenced by oxygen and the redox status of the cell. Altered glycan structures can affect cell interactions and signaling. In this study, we investigated the effect of different oxygen conditions on aspects of the glycobiology of the pulmonary endothelium with an emphasis on N-glycans and terminal sialylation using an in vitro cell culture system. We combined a proteomic approach with N-glycan structure analysis by LC-MS, qRT-PCR, sialic acid analysis and lectin binding to show that constant and intermittent hyperoxia induced time dependent changes in global and surface glycosylation. An siRNA approach identified St6gal1 as being primarily responsible for the early transient increase of α2-6 sialylated structures in response to hyperoxia.

8.
Physiol Rep ; 9(3): e14590, 2021 02.
Article En | MEDLINE | ID: mdl-33565273

The pulmonary endothelium is an immediate recipient of high oxygen concentrations upon oxygen therapy and mediates down-stream responses. Cyclic collapse and reopening of atelectatic lung areas during mechanical ventilation with high fractions of inspired oxygen result in the propagation of oxygen oscillations in the hypoxic/hyperoxic range. We used primary murine lung endothelial cell cultures to investigate cell responses to constant and oscillating oxygen conditions in the hypoxic to hyperoxic range. Severe constant hyperoxia had pro-inflammatory and cytotoxic effects including an increase in expression of ICAM1, E-selectin, and RAGE at 24 hr exposure. The coagulative/fibrinolytic system responded by upregulation of uPA, tPA, and vWF and PAI1 under constant severe hyperoxia. Among antioxidant enzymes, the upregulation of SOD2, TXN1, TXNRD3, GPX1, and Gstp1 at 24 hr, but downregulation of SOD3 at 72 hr constant hyperoxia was evident. Hypoxic/hyperoxic oscillating oxygen conditions induced pro-inflammatory cytokine release to a lesser extent and later than constant hyperoxia. Gene expression analyses showed upregulation of NFKB p65 mRNA at 72 hr. More evident was a biphasic response of NOS3 and ACE1 gene expression (downregulation until 24 hr and upregulation at 72 hr). ACE2 mRNA was upregulated until 72 hr, but shedding of the mature protein from the cell surface favored ACE1. Oscillations resulted in severe production of peroxynitrite, but apart from upregulation of Gstp1 at 24 hr responses of antioxidative proteins were less pronounced than under constant hyperoxia. Oscillating oxygen in the hypoxic/hyperoxic range has a characteristical impact on vasoactive mediators like NOS3 and on the activation of the renin-angiotensin system in the lung endothelium.


Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Hyperoxia/metabolism , Hypoxia/metabolism , Lung/blood supply , Oxygen/metabolism , Animals , Antioxidants/metabolism , Apoptosis , Blood Coagulation , Cell Hypoxia , Cells, Cultured , Cytokines/metabolism , Endothelial Cells/pathology , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , Hyperoxia/pathology , Hyperoxia/physiopathology , Hypoxia/pathology , Hypoxia/physiopathology , Inflammation Mediators/metabolism , Mice , Mice, Inbred C57BL , Necrosis , Renin-Angiotensin System , Time Factors
9.
Front Physiol ; 12: 806062, 2021.
Article En | MEDLINE | ID: mdl-35498160

Acute respiratory distress syndrome (ARDS) is a major concern in critical care medicine with a high mortality of over 30%. Injury to the lungs is caused not only by underlying pathological conditions such as pneumonia, sepsis, or trauma, but also by ventilator-induced lung injury (VILI) resulting from high positive pressure levels and a high inspiratory oxygen fraction. Apart from mechanical factors that stress the lungs with a specific physical power and cause volutrauma and barotrauma, it is increasingly recognized that lung injury is further aggravated by biological mediators. The COVID-19 pandemic has led to increased interest in the role of the renin-angiotensin system (RAS) in the context of ARDS, as the RAS enzyme angiotensin-converting enzyme 2 serves as the primary cell entry receptor for severe acute respiratory syndrome (SARS) coronavirus (CoV)-2. Even before this pandemic, studies have documented the involvement of the RAS in VILI and its dysregulation in clinical ARDS. In recent years, analytical tools for RAS investigation have made major advances based on the optimized precision and detail of mass spectrometry. Given that many clinical trials with pharmacological interventions in ARDS were negative, RAS-modifying drugs may represent an interesting starting point for novel therapeutic approaches. Results from animal models have highlighted the potential of RAS-modifying drugs to prevent VILI or treat ARDS. While these drugs have beneficial pulmonary effects, the best targets and application forms for intervention still have to be determined to avoid negative effects on the circulation in clinical settings.

10.
Int J Mol Sci ; 23(1)2021 Dec 22.
Article En | MEDLINE | ID: mdl-35008532

Living organisms use a large repertoire of anabolic and catabolic reactions to maintain their physiological body functions, many of which include oxidation and reduction of substrates. The scientific field of redox biology tries to understand how redox homeostasis is regulated and maintained and which mechanisms are derailed in diverse pathological developments of diseases, where oxidative or reductive stress is an issue. The term "oxidative stress" is defined as an imbalance between the generation of oxidants and the local antioxidative defense. Key mediators of oxidative stress are reactive species derived from oxygen, nitrogen, and sulfur that are signal factors at physiological concentrations but can damage cellular macromolecules when they accumulate. However, therapeutical targeting of oxidative stress in disease has proven more difficult than previously expected. Major reasons for this are the very delicate cellular redox systems that differ in the subcellular compartments with regard to their concentrations and depending on the physiological or pathological status of cells and organelles (i.e., circadian rhythm, cell cycle, metabolic need, disease stadium). As reactive species are used as signaling molecules, non-targeted broad-spectrum antioxidants in many cases will fail their therapeutic aim. Precision medicine is called to remedy the situation.


Homeostasis/physiology , Animals , Circadian Rhythm/physiology , Humans , Oxidation-Reduction , Oxidative Stress/physiology , Precision Medicine , Signal Transduction/physiology
11.
Basic Res Cardiol ; 115(6): 76, 2020 12 01.
Article En | MEDLINE | ID: mdl-33258993

Ischemic mitral regurgitation (MR) is a frequent complication of myocardial infarction (MI) characterized by adverse remodeling both at the myocardial and valvular levels. Persistent activation of valvular endothelial cells leads to leaflet fibrosis through endothelial-to-mesenchymal transition (EMT). Tenascin C (TNC), an extracellular matrix glycoprotein involved in cardiovascular remodeling and fibrosis, was also identified in inducing epithelial-to-mesenchymal transition. In this study, we hypothesized that TNC also plays a role in the valvular remodeling observed in ischemic MR by contributing to valvular excess EMT. Moderate ischemic MR was induced by creating a posterior papillary muscle infarct (7 pigs and 7 sheep). Additional animals (7 pigs and 4 sheep) served as controls. Pigs and sheep were sacrificed after 6 weeks and 6 months, respectively. TNC expression was upregulated in the pig and sheep experiments at 6 weeks and 6 months, respectively, and correlated well with leaflet thickness (R = 0.68; p < 0.001 at 6 weeks, R = 0.84; p < 0.001 at 6 months). To confirm the translational potential of our findings, we obtained mitral valves from patients with ischemic cardiomyopathy presenting MR (n = 5). Indeed, TNC was also expressed in the mitral leaflets of these. Furthermore, TNC induced EMT in isolated porcine mitral valve endothelial cells (MVEC). Interestingly, Toll-like receptor 4 (TLR4) inhibition prevented TNC-mediated EMT in MVEC. We identified here for the first time a new contributor to valvular remodeling in ischemic MR, namely TNC, which induced EMT through TLR4. Our findings might set the path for novel therapeutic targets for preventing or limiting ischemic MR.


Endothelial Cells/metabolism , Epithelial-Mesenchymal Transition , Mitral Valve Insufficiency/metabolism , Mitral Valve/metabolism , Myocardial Infarction/complications , Tenascin/metabolism , Aged , Aged, 80 and over , Animals , Cells, Cultured , Disease Models, Animal , Endothelial Cells/pathology , Female , Humans , Male , Middle Aged , Mitral Valve/pathology , Mitral Valve/physiopathology , Mitral Valve Insufficiency/etiology , Mitral Valve Insufficiency/pathology , Mitral Valve Insufficiency/physiopathology , Sheep, Domestic , Signal Transduction , Sus scrofa , Toll-Like Receptor 4/metabolism , Up-Regulation
12.
13.
Front Physiol ; 11: 947, 2020.
Article En | MEDLINE | ID: mdl-32848874

Soon after its discovery in the 18th century, oxygen was applied as a therapeutic agent to treat severely ill patients. Lack of oxygen, commonly termed as hypoxia, is frequently encountered in different disease states and is detrimental to human life. However, at the end of the 19th century, Paul Bert and James Lorrain Smith identified what is known as oxygen toxicity. The molecular basis of this phenomenon is oxygen's readiness to accept electrons and to form different variants of aggressive radicals that interfere with normal cell functions. The human body has evolved to maintain oxygen homeostasis by different molecular systems that are either activated in the case of oxygen under-supply, or to scavenge and to transform oxygen radicals when excess amounts are encountered. Research has provided insights into cellular mechanisms of oxygen homeostasis and is still called upon in order to better understand related diseases. Oxygen therapy is one of the prime clinical interventions, as it is life saving, readily available, easy to apply and economically affordable. However, the current state of research also implicates a reconsidering of the liberal application of oxygen causing hyperoxia. Increasing evidence from preclinical and clinical studies suggest detrimental outcomes as a consequence of liberal oxygen therapy. In this review, we summarize concepts of cellular mechanisms regarding different forms of disturbed cellular oxygen homeostasis that may help to better define safe clinical application of oxygen therapy.

14.
Anesth Analg ; 130(2): 321-331, 2020 02.
Article En | MEDLINE | ID: mdl-31498191

BACKGROUND: Epidural-related maternal fever (ERMF) is an adverse effect of epidural analgesia during labor and is associated with perinatal and neonatal morbidity. Local anesthetics have been proposed to trigger ERMF via sterile inflammation. Ropivacaine is currently the most frequently used epidural anesthetic and considered least toxic. This study investigates molecular effects of ropivacaine on human umbilical vein endothelial cells (HUVECs) as model system for endothelial cells and human placental trophoblasts (TBs), compares the effects to the putative anti-inflammatory lidocaine and investigates the partially alleviating impact of the anti-inflammatory corticosteroid dexamethasone. METHODS: HUVECs and TBs were exposed to ropivacaine (35 µM-7 mM) or lidocaine (21 mM) with or without dexamethasone (1 µM). AnnexinV/propidium iodide staining and lactate dehydrogenase release were used to analyze apoptosis and cytotoxicity. Proinflammatory interleukins-6 (IL-6) and IL-8 as well as prostaglandin E2 (PGE2) were measured by enzyme-linked immunosorbent assay (ELISA), while activation of signaling pathways was detected by Western blotting. Oxidative stress was visualized by live cell imaging and quantification of antioxidant proteins, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, platelet endothelial cell adhesion molecule 1, cyclooxygenase 2, and mitochondrial deoxyribonucleic acid by real-time polymerase chain reaction. Dissipation of the mitochondrial membrane potential was assessed with cytofluorimetric analysis using the J-Aggregate (JC-1 staining [cytofluorimetric analysis using the J-Aggregate]). RESULTS: Ropivacaine exposure dose-dependently induced apoptosis and an increased release of IL-6, IL-8, and PGE2 from HUVECs and TBs. Furthermore, caspase-3, nuclear factor-κB, and p38 mitogen-activated protein kinase pathways were activated, while extracellular signal-regulated kinase 1/2 and protein kinase B (Akt) were dephosphorylated. Downregulation of antioxidative proteins induced oxidative stress and upregulation of ICAM1, VCAM1, and PECAM1 possibly facilitate leukocyte transmigration. Mitochondrial effects included increased release of the proinflammatory mitochondrial DNA damage-associated molecular patterns, but no significant dissipation of the mitochondrial membrane potential. Conversely, lidocaine exhibited repression of IL-6 and IL-8 release over all time points, and early downregulation of COX2 and cell adhesion molecules, which was followed by a late overshooting reaction. Dexamethasone reduced especially inflammatory effects, but as an inducer of mitophagy, had negative long-term effects on mitochondrial function. CONCLUSIONS: This study suggests that ropivacaine causes cellular injury and death in HUVECs and TBs via different signaling pathways. The detrimental effects induced by ropivacaine are only partially blunted by dexamethasone. This observation strengthens the importance of inflammation in ERMF.


Anesthesia, Epidural/adverse effects , Anesthetics, Local/adverse effects , Apoptosis/drug effects , Fever/metabolism , Inflammation Mediators/metabolism , Ropivacaine/adverse effects , Anesthetics, Local/administration & dosage , Apoptosis/physiology , Cells, Cultured , Dose-Response Relationship, Drug , Female , Fever/chemically induced , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Pregnancy , Ropivacaine/administration & dosage , Signal Transduction/drug effects , Signal Transduction/physiology
15.
Front Mol Neurosci ; 12: 29, 2019.
Article En | MEDLINE | ID: mdl-30853888

Calcium is one of the most important signaling factors in mammalian cells. Specific temporal and spatial calcium signals underlie fundamental processes such as cell growth, development, circadian rhythms, neurotransmission, hormonal actions and apoptosis. In order to translate calcium signals into cellular processes a vast number of proteins bind this ion with affinities from the nanomolar to millimolar range. Using classical biochemical methods an impressing number of calcium binding proteins (CBPs) have been discovered since the late 1960s, some of which are expressed ubiquitously, others are more restricted to specific cell types. In the nervous system expression patterns of different CBPs have been used to discern different neuronal cell populations, especially before advanced methods like single-cell transcriptomics and activity recording were available to define neuronal identity. However, understanding CBPs and their interacting proteins is still of central interest. The post-genomic era has coined the term "calciomics," to describe a whole new research field, that engages in the identification and characterization of CBPs and their interactome. Secretagogin is a CBP, that was discovered 20 years ago in the pancreas. Consecutively it was found also in other organs including the nervous system, with characteristic expression patterns mostly forming cell clusters. Its regional expression and subcellular location together with the identification of protein interaction partners implicated, that secretagogin has a central role in hormone secretion. Meanwhile, with the help of modern proteomics a large number of actual and putative interacting proteins has been identified, that allow to anticipate a much more complex role of secretagogin in developing and adult neuronal cells. Here, we review recent findings that appear like puzzle stones of a greater picture.

16.
Front Physiol ; 9: 1754, 2018.
Article En | MEDLINE | ID: mdl-30574096

Intermittent hypoxia is a major factor in clinical conditions like the obstructive sleep apnea syndrome or the cyclic recruitment and derecruitment of atelectasis in acute respiratory distress syndrome and positive pressure mechanical ventilation. In vivo investigations of the direct impact of intermittent hypoxia are frequently hampered by multiple co-morbidities of patients. Therefore, cell culture experiments are important model systems to elucidate molecular mechanisms that are involved in the cellular response to alternating oxygen conditions and could represent future targets for tailored therapies. In this study, we focused on mouse lung endothelial cells as a first frontier to encounter altered oxygen due to disturbances in airway or lung function, that play an important role in the development of secondary diseases like vascular disease and pulmonary hypertension. We analyzed key markers for endothelial function including cell adhesion molecules, molecules involved in regulation of fibrinolysis, hemostasis, redox balance, and regulators of gene expression like miRNAs. Results show that short-time exposure to intermittent hypoxia has little impact on vitality and health of cells. At early timepoints and up to 24 h, many endothelial markers are unchanged in their expression and some indicators of injury are even downregulated. However, in the long-term, multiple signaling pathways are activated, that ultimately result in cellular inflammation, oxidative stress, and apoptosis.

17.
Shock ; 49(5): 556-563, 2018 05.
Article En | MEDLINE | ID: mdl-29658909

BACKGROUND: The noble gas argon induces cardioprotection in a rabbit model of myocardial ischemia and reperfusion. However, no studies in human primary cells or subjects have been performed so far. We used human cardiac myocyte-like progenitor cells (HCMs) to investigate the protective effect on the cellular level. METHODS: HCMs were pretreated with 30% or 50% argon before oxygen-glucose deprivation (OGD) and reperfusion. We evaluated apoptotic states by flow cytometry and the activation of mitogen-activated protein kinase (MAPKs) members extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), p38 MAPkinase, and protein kinase B (Akt) by Westernblot analysis and by activity assays of downstream transcription factors. Specific inhibitors were used to proof a significant participation of these pathways in the protection by argon. Beneficial effects were further assessed by TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay, lactate dehydrogenase (LDH), mitochondrial deoxyribonucleic acid (mtDNA), and cytokine release. RESULTS: Pretreatment with 30% or 50% argon for 90 min before OGD resulted in a significant protection of HCMs against apoptosis. This effect was reversed by the application of MAPK and Akt inhibitors during argon exposure. Argon 30% reduced the release of LDH by 33% and mtDNA by 45%. The release of interleukin 1ß was reduced by 44% after OGD and more than 90% during reperfusion. CONCLUSIONS: Pretreatment with argon protects HCMs from apoptosis under ischemic conditions via activation of Akt, Erk, and biphasic regulation of JNK. Argon gas is cheap and easily administrable, and might be a novel therapy to reduce myocardial ischemia-reperfusion injury.


Argon/pharmacology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Stem Cells/cytology , Stem Cells/drug effects , Animals , Apoptosis/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Flow Cytometry , Humans , In Situ Nick-End Labeling , JNK Mitogen-Activated Protein Kinases/metabolism , L-Lactate Dehydrogenase/metabolism , Rabbits , Signal Transduction/drug effects
18.
F1000Res ; 72018.
Article En | MEDLINE | ID: mdl-29568488

Acute respiratory distress syndrome (ARDS) is characterized by acute diffuse lung injury, which results in increased pulmonary vascular permeability and loss of aerated lung tissue. This causes bilateral opacity consistent with pulmonary edema, hypoxemia, increased venous admixture, and decreased lung compliance such that patients with ARDS need supportive care in the intensive care unit to maintain oxygenation and prevent adverse outcomes. Recently, advances in understanding the underlying pathophysiology of ARDS led to new approaches in managing these patients. In this review, we want to focus on recent scientific evidence in the field of ARDS research and discuss promising new developments in the treatment of this disease.

19.
Eur J Anaesthesiol ; 34(3): 141-149, 2017 03.
Article En | MEDLINE | ID: mdl-28146458

BACKGROUND: Perioperative oxygen (O2) therapy can cause hyperoxia. Extreme hyperoxia can injure the cardiovascular system and remote organs. OBJECTIVE: Our primary objective was to test the hypothesis that exposure to moderate hyperoxia will induce injury to human umbilical vein endothelial cells (HUVECs), a model for studying the vascular endothelium under controlled conditions. DESIGN: In-vitro cell culture study. SETTING: Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Austria. Study period from the beginning of October 2013 to the end of July 2014. CELLS: HUVECs were isolated from fresh umbilical cords. INTERVENTIONS: HUVECs were exposed to constant hyperoxia (40% O2), cyclic hyperoxia/anoxia (40%/0% O2, average 20% O2), constant normoxia (21% O2) and constant anoxia (0% O2) using a cell culture bioreactor. MAIN OUTCOME MEASURES: Cell growth, viability and release of IL-6, IL-8 and macrophage migration inhibitory factor were assessed at baseline and after 6, 12, 24 and 48 h of treatment. A phosphokinase array was performed after 60 min of treatment to identify activated cellular signalling pathways. RESULTS: Constant hyperoxia and cyclic hyperoxia/anoxia impeded cell growth, reduced viability, triggered a proinflammatory response, proven by IL-6, IL-8 and migration inhibitory factor release, and induced apoptosis and necrosis. The inflammatory and cytotoxicity responses were highest in the constant hyperoxia group. Phosphokinase arrays revealed that different O2 concentrations activated distinct sets of cytoprotective and cell death-associated kinases, including mitogen-activated protein kinases, Src kinases, p53, Akt, mitogen-activated and stress-activated kinase, Lyn, Lck, p70S6, signal transducers and activators of transcription 5b and 6, glycogen synthase kinase 3a/b and 5' AMP-activated protein kinases 1/2. CONCLUSION: Continuous moderate hyperoxia and cyclic moderate hyperoxia/anoxia-induced endothelial inflammation, apoptosis and necrosis. Given the large surface area of the vascular endothelium, moderately elevated O2 levels may contribute to cardiovascular inflammation and injury. TRIAL REGISTRATION: This in-vitro study was not registered in a database.


Apoptosis/physiology , Human Umbilical Vein Endothelial Cells/metabolism , Hyperoxia/metabolism , Inflammation Mediators/metabolism , Cell Proliferation/physiology , Cell Survival/physiology , Cells, Cultured , Human Umbilical Vein Endothelial Cells/pathology , Humans , Hyperoxia/pathology , Inflammation/metabolism , Inflammation/pathology , Necrosis/metabolism , Necrosis/pathology
20.
Anesth Analg ; 122(2): 373-80, 2016 Feb.
Article En | MEDLINE | ID: mdl-26505576

BACKGROUND: Intermittent hypoxia may occur in a number of clinical scenarios, including interruption of myocardial blood flow or breathing disorders such as obstructive sleep apnea. Although intermittent hypoxia has been linked to cardiovascular and cerebrovascular disease, the effect of intermittent hypoxia on the human heart is not fully understood. Therefore, in the present study, we compared the cellular responses of cultured human adult cardiac myocytes (HACMs) exposed to intermittent hypoxia and different conditions of continuous hypoxia and normoxia. METHODS: HACMs were exposed to intermittent hypoxia (0%-21% O2), constant mild hypoxia (10% O2), constant severe hypoxia (0% O2), or constant normoxia (21% O2), using a novel cell culture bioreactor with gas-permeable membranes. Cell proliferation, lactate dehydrogenase release, vascular endothelial growth factor release, and cytokine (interleukin [IL] and macrophage migration inhibitory factor) release were assessed at baseline and after 8, 24, and 72 hours of exposure. A signal transduction pathway finder array was performed to determine the changes in gene expression. RESULTS: In comparison with constant normoxia and constant mild hypoxia, intermittent hypoxia induced earlier and greater inflammatory response and extent of cell injury as evidenced by lower cell numbers and higher lactate dehydrogenase, vascular endothelial growth factor, and proinflammatory cytokine (IL-1ß, IL-6, IL-8, and macrophage migration inhibitory factor) release. Constant severe hypoxia showed more detrimental effects on HACMs at later time points. Pathway analysis demonstrated that intermittent hypoxia primarily altered gene expression in oxidative stress, Wnt, Notch, and hypoxia pathways. CONCLUSIONS: Intermittent and constant severe hypoxia, but not constant mild hypoxia or normoxia, induced inflammation and cell injury in HACMs. Cell injury occurred earliest and was greatest after intermittent hypoxia exposure. Our in vitro findings suggest that intermittent hypoxia exposure may produce rapid and substantial damage to the human heart.


Hypoxia/complications , Myocarditis/etiology , Myocytes, Cardiac/pathology , Adult , Bioreactors , Cell Proliferation , Cells, Cultured , Cytokines/metabolism , Gene Expression , Humans , Hypoxia/genetics , Hypoxia/pathology , L-Lactate Dehydrogenase/metabolism , Membranes, Artificial , Myocarditis/genetics , Myocarditis/pathology , Signal Transduction , Sleep Apnea, Obstructive/pathology , Vascular Endothelial Growth Factor A/metabolism
...